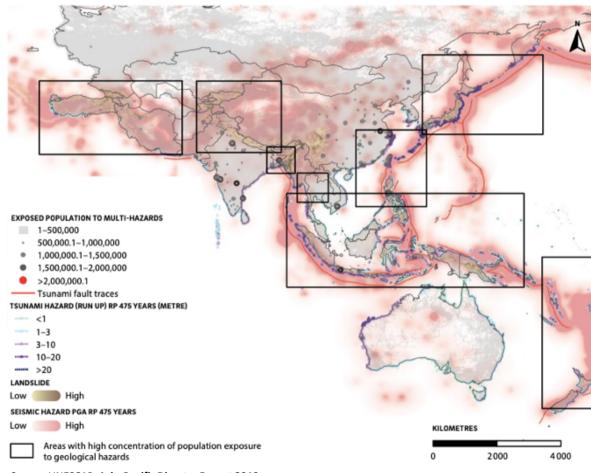


BUILDING BACK BETTER CENTRAL SULAWESI: Planning For Resilient Infrastructure Post Earthquake


Abdul Malik Sadat Idris Director of Water Resouces and Irrigation, Bappenas

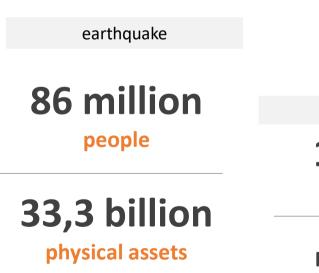
International Recovery Forum Kobe, 28 January 2020

Outline:

- **1.** Background: Understanding Risk and Central Sulawesi Earthquake
- 2. Planning Process for Rehabilitation and Reconstruction
- 3. Planning for Resilient Infrastructure
- 4. Enhancing Infrastructure Disaster Resilience for the Next Five Years

1. Background: Understanding risk - The Ring of Fire -

- Concentration of population most exposed to seismic risks (earthquakes, landslides and tsunamis) are along the Pacific Ring of Fire (UNESCAP, 2018).
- The Ring of Fire hotspots with critical infrastructure exposure : Concentration of population are in growth centers or cities with a high risk of disaster → the potential for economic losses is also large.


HOTSPOT 2	RING OF FIRE				
Earthquake, landslide and tsunami, typhoon tracks, North and East Asia, South-East Asia					
Population exposure		High (disproportionate impact on poor)			
Economic stock exposure		Very high			
Infrastructure: energy		Very high			
Infrastructure: transport		High			
Infrastructure: ICT		Moderate			

Source: UNESCAP, Asia-Pacific Disaster Report 2019

1. Background: Understanding risk

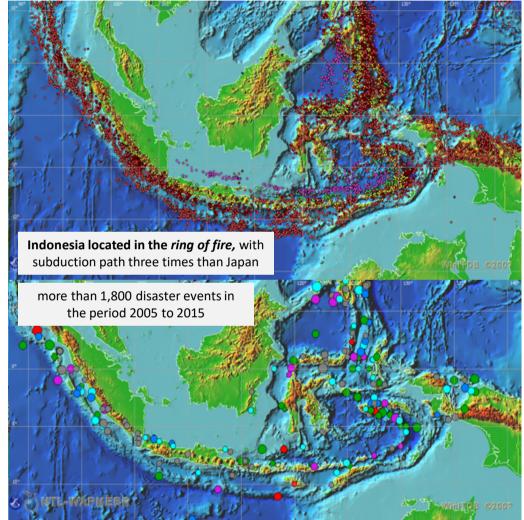
- Exposed People and Assets -

Number of lives and assets (USD) exposed to the risk of earthquake, tsunami, and landslides

people 5 billion

tsunami

3 million


physical assets

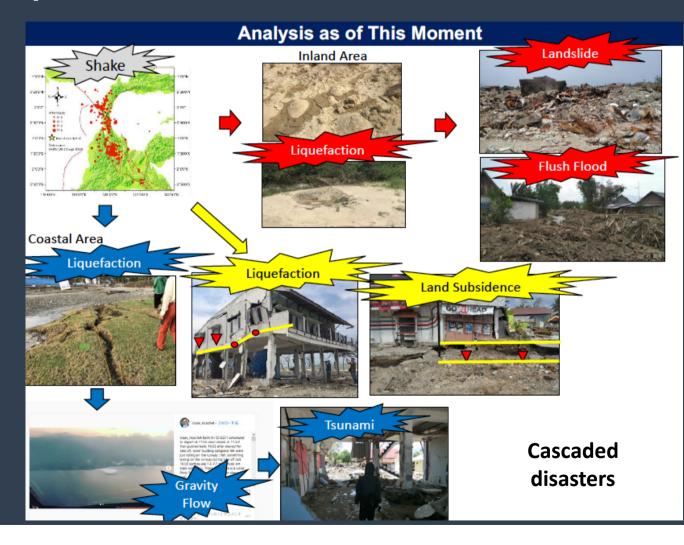
landslide

14 million

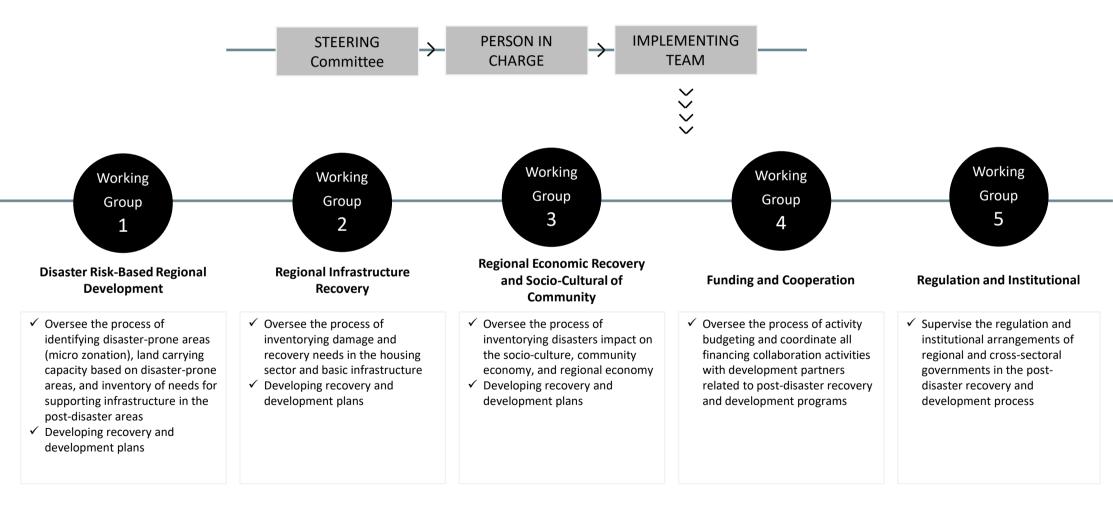
people

5,5 billion

Distribution of earthquakes that occurred since 1600 (above) and tsunamis (below) Source: Prasetya, 2019


Source: BNPB, 2015

1. Background: Understanding risk

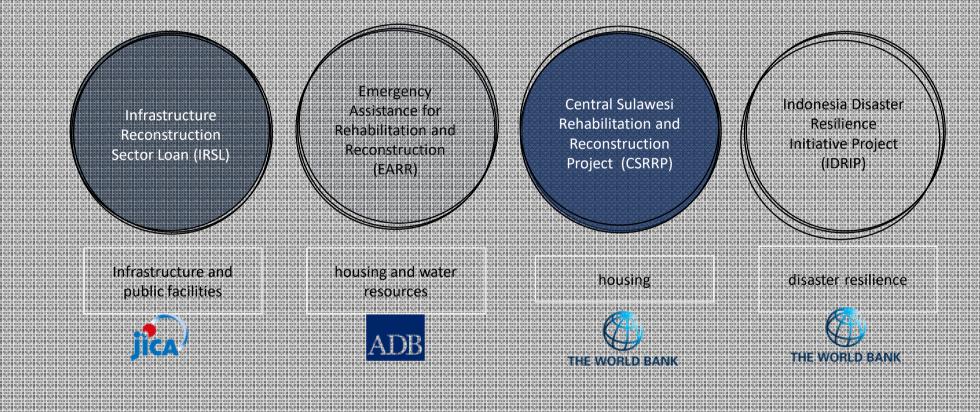

- Central Sulawesi Earthquake -

4.340 dead and missing 172.635 evacuated

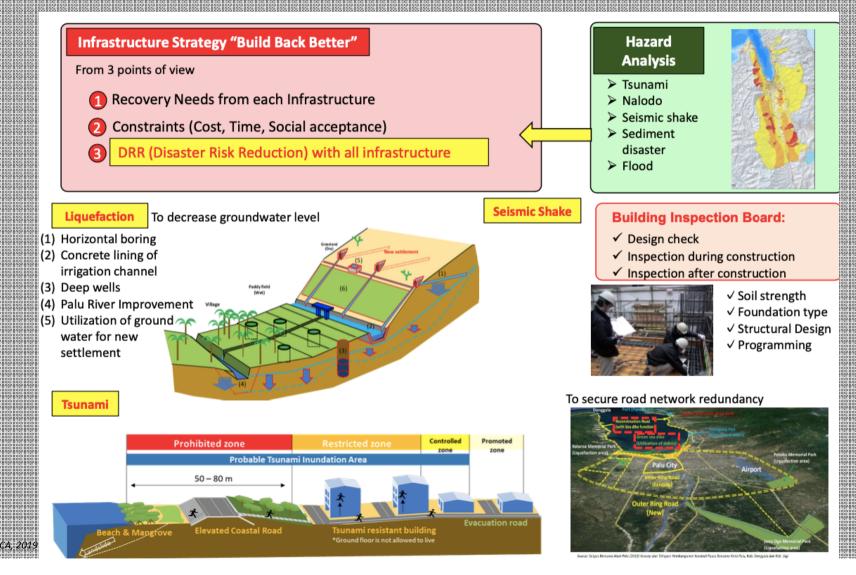
1,32 billion USD ~ 19,27% damage and losses to GRDP Central Sulawesi

2. Planning Process: Coordination and Assistance Team for Rehabilitation and Reconstruction

2. Planning Process: Joint Commitment to Post-Disaster Rehabilitation and Reconstruction

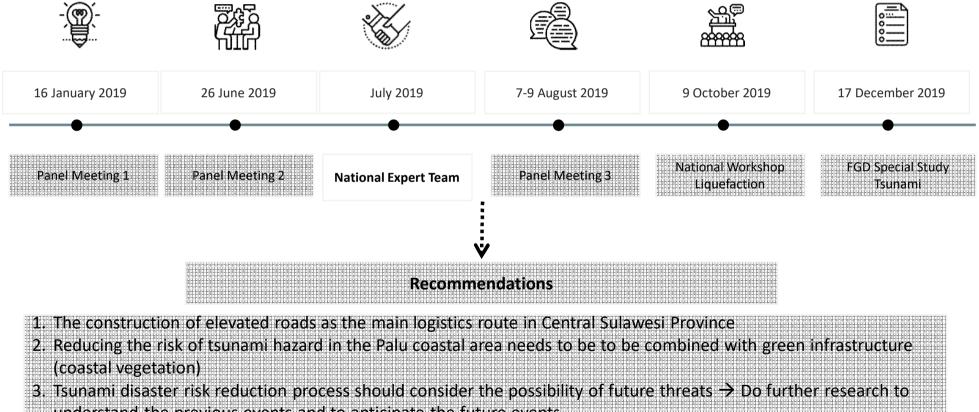


Rehabilitation and Reconstruction Plan for Each District/City



Source: Rehabilitation and reconstruction plan/action plans for each district/city affected by the disaster, Bappenas 2019

2. Planning Process: Development Partner Support and Works Division


3. Resilient Infrastructure: The Strategy

3. Resilient Infrastructure: Considering all Hazards

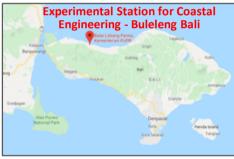
Infrastructure facilities	Points to consider					
	Earthquake	Tsunami	Liquefaction	Sediment	Flood	
Road	✓	Coastal area only	Avoidance	Disaster Risk	Disaster Risk	
Bridge	✓	Coastal area only	Avoidance	Disaster Risk	Disaster Risk	
Harbor	✓	~	~	_	_	
Sea Dike	✓	~	~	Disaster Risk	Disaster Risk	
River Dike	✓	Coastal area only	✓	Disaster Risk	Disaster Risk	
Irrigation	✓	Coastal area only	✓	-	Disaster Risk	
Water Supply/Sewerage system	✓	Coastal area only	~	_	Disaster Risk	
Architecture	×	Coastal area only	Avoidance	Disaster Risk	Disaster Risk	
Public facility	×	Avoidance	Avoidance	Disaster Risk	Disaster Risk	
Communications · Broadcasting	✓	Avoidance	Avoidance	Disaster Risk	Disaster Risk	

3. Resilient Infrastructure: National and International Panel Experts Involvement

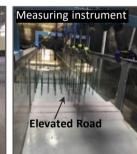
understand the previous events and to anticipate the future events.

3. Resilient Infrastructure: Elevated Logistic Road with Tsunami Mitigation Measures Function

Source: JICA, 2019


3. Resilient Infrastructure: Joint Research for Tsunami Mitigation Measures

Model Test for Tsunami Measures

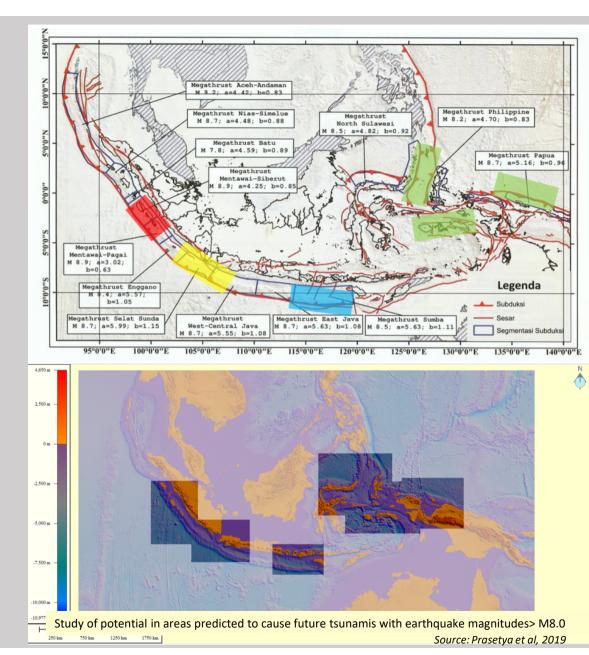

Purpose:

Validity check for elevated road height as a tsunami countermeasure. Confirmation of tsunami mitigation effect by mangrove and inland trees.

Tsunami Experiment Facility

Scenario	
1:100	7
3.5m, 4.5m, 5.5m	Tetel
Without, With (35m)	Total - <u>27</u> Series
With	Series
Without, With (25m)	
Without, With (MSL+5.0, 6.5m)	J
	1:100 3.5m, 4.5m, 5.5m Without, With (35m) With Without, With (25m)

Participation of Japanese Experts



Experimental Series and Model

3. Resilient Infrastructure: Preparing for Potential Future Events

Based on the megathrust potential data from the results of the 2017 National Earthquake Center (PusGeN) study, Priority areas for tsunami disaster risk mitigation are:

- The southern coast of the Indonesian Archipelago with priority for the city of Padang and its surroundings: Megathrust Mentawai-Pagai with potential M8.9
- South Coast of Bengkulu-West Java including the Sunda Strait region: Megathrust Enggano-Sunda Strait-West Java (Sunda Gap) with the potential of each M8.8 or can be simultaneous with M> 9
- South Coast of East Java Nusa Tenggara: Megathrust Central Java - East Java and Bali with potential M8,9
- North Coast of North Sulawesi: Megathrust Northern Sulawesi Trench with potential M8.5
- Coastal Area of Buru-Seram Island, Halmahera and Papua with potential M8.0

4. Enhancing Infrastructure Disaster Resilience for the Next Five Years: Mainstreaming the Issue

Disaster Management has become mainstream in the 2020-2024 RPJMN

Disaster Management Activities are included in the Development Agenda (PN) 2, Development Agenda (PN) 5, and Development Agenda (PN) 6 in the 2020-2024 RPJMN Document

Major Projects (MPs) related to Disaster Management:

- Post-Disaster Rehabilitation and Reconstruction in Central Sulawesi, Banten and West Nusa Tenggara Provinces → Part of PN 2
- Coastal Protection for 5 Urban North Coast of Java \rightarrow Part of PN 5
- Strengthening the Integrated Multi Hazards Mitigation System ightarrow Part of PN 6

15

Terima kasih